Biointelligence (Article)
Multi-Image Steganography Using Deep Neural Networks
Steganography is the science of hiding a secret message within an ordinary public message. Over the years, steganography has been used to encode a lower resolution image into a higher resolution image by simple methods like LSB manipulation. We aim to utilize deep neural networks for the encoding and decoding of multiple secret images inside a single cover image of the same resolution.
COCIR analyses application of medical device legislation to Artificial Intelligence
“The European Commission has shown its ambition in the area of artificial intelligence (AI) in its recent White Paper on Artificial Intelligence – a European approach to excellence and trust. This White Paper is at the same time a precursor of possible legislation of AI in products and services in the European Union. However, COCIR sees no need for novel regulatory frameworks for AI-based devices in Healthcare, because the requirements of EU MDR and EU IVDR in combination with GDPR are adequate to ensure that same excellence and trust.” (COCIR paper).
Artificial Intelligence in Medical Imaging
“This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging”.
Diagnostic uncertainty calibration: towards reliable machine predictions in medical domain
We further formalize the metrics for higher-order statistics, including inter-rater disagreement, in a unified way, which enables us to assess the quality of distributional uncertainty. In addition, we propose a novel post-hoc calibration method that equips trained neural networks with calibrated distributions over class probability estimates. With a large-scale medical imaging application, we show that our approach significantly improves the quality of uncertainty estimates in multiple metrics.
Undergraduate Diagnostic Imaging Fundamentals
The structure and content of this work has been guided by the curricula developed by the European Society of Radiology, the Royal College of Radiologists, the Alliance of Medical Student Educators in Radiology, with guidance and input from Canadian Radiology Undergraduate Education Coordinators, and the Canadian Heads of Academic Radiology (CHAR).
Machine Learning for Medical Imaging Analysis Demystified
This lecture will outline the fundamental ML processes involved in medical image analysis. Achieving prediction and classification for CAD applications will also be discussed. Some preliminary ideas of 3D reconstruction and viewing as applied in medical image analysis will also be presented.
A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy
This paper contributes the first human-centered observational study of a deep learning system deployed directly in clinical care with patients. Through field observations and interviews at eleven clinics across Thailand, we explored the expectations and realities that nurses encounter in bringing a deep learning model into their clinical practices. First, we outline typical eye-screening workflows and challenges that nurses experience when screening hundreds of patients. Then, we explore the expectations nurses have for an AI-assisted eye screening process. Next, we present a human-centered, observational study of the deep learning system used in clinical care, examining nurses’ experiences with the system, and the socio-environmental factors that impacted system performance. Finally, we conclude with a discussion around applications of HCI methods to the evaluation of deep learning algorithms in clinical environments.