Deep Learning (Article)

R0:c4c3ffc882452ee50fea21d2c6b1486a-CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization

CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization

CNN Explainer tightly integrates a model overview that summarizes a CNN’s structure, and on-demand, dynamic visual explanation views that help users understand the underlying components of CNNs. Through smooth transitions across levels of abstraction, our tool enables users to inspect the interplay between low-level mathematical operations and high-level model structures.

R0:a8fc240769ba4448b373719f7fbe640d-Do Vision Transformers See Like Convolutional Neural Networks?

Do Vision Transformers See Like Convolutional Neural Networks?

Convolutional neural networks (CNNs) have so far been the de-facto model for visual data. Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks. This raises a central question: how are Vision Transformers solving these tasks? Are they acting like convolutional networks, or learning entirely different visual representations? Analyzing the internal representation structure of ViTs and CNNs on image classification benchmarks, we find striking differences between the two architectures, such as ViT having more uniform representations across all layers. We explore how these differences arise, finding crucial roles played by self-attention, which enables early aggregation of global information, and ViT residual connections, which strongly propagate features from lower to higher layers.

R0:2271580d5e4f655f084ee4605a50b147-labml.ai Deep Learning Paper Implementations

labml.ai Deep Learning Paper Implementations

This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations, and the website renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better.

S++: A Fast and Deployable Secure-Computation Framework for Privacy-Preserving Neural Network Training

S++: A Fast and Deployable Secure-Computation Framework for Privacy-Preserving Neural Network Training

We introduce S++, a simple, robust, and deployable framework for training a neural network (NN) using private data from multiple sources, using secret-shared secure function evaluation. In short, consider a virtual third party to whom every data-holder sends their inputs, and which computes the neural network: in our case, this virtual third party is actually a set of servers which individually learn nothing, even with a malicious (but non-colluding) adversary.

R0:3d92323b5375746d21dcb172e8950adc-Explainability in Graph Neural Networks: A Taxonomic Survey

Explainability in Graph Neural Networks: A Taxonomic Survey

We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.

R0identifier_ 7029b309b114bdb1aa72b6fd0da905f3-Yann LeCun’s Deep Learning Course at CDS

Yann LeCun’s Deep Learning Course at CDS

This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. The prerequisites include: DS-GA 1001 Intro to Data Science or a graduate-level machine learning course.

https://editorialia.com/wp-content/uploads/2020/06/toolkit-for-healthcare-imaging.jpg

Medical Open Network for AI (MONAI), AI Toolkit for Healthcare Imaging

The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm.

https://editorialia.com/wp-content/uploads/2020/06/introduction-to-cntk-succinctly.jpg

Introduction to CNTK Succinctly (Microsoft Cognitive Toolkit)

“Microsoft CNTK (Cognitive Toolkit, formerly Computational Network Toolkit), an open source code framework, enables you to create feed-forward neural network time series prediction systems, convolutional neural network image classifiers, and other deep learning systems. In Introduction to CNTK Succinctly, author James McCaffrey offers instruction on the basics of installing and running CNTK, and also addresses machine-learning regression and classification techniques. Exercises and explanations are included in each chapter”. (Syncfusion)