Machine Learning (Article)

->Artificial intelligence towards data science

Probabilistic Machine Learning for Healthcare

Machine learning can be used to make sense of healthcare data. Probabilistic machine learning models help provide a complete picture of observed data in healthcare. In this review, we examine how probabilistic machine learning can advance healthcare. We consider challenges in the predictive model building pipeline where probabilistic models can be beneficial including calibration and missing data. Beyond predictive models, we also investigate the utility of probabilistic machine learning models in phenotyping, in generative models for clinical use cases, and in reinforcement learning.

https://editorialia.com/wp-content/uploads/2020/09/by-danny-friedman-machine-learning-from-scratch-1.jpg

Machine Learning from scratch (by Danny Friedman)

This book covers the building blocks of the most common methods in machine learning. This set of methods is like a toolbox for machine learning engineers. Those entering the field of machine learning should feel comfortable with this toolbox so they have the right tool for a variety of tasks.

https://editorialia.com/wp-content/uploads/2020/06/machine-learning-in-medicine-a-practical-introduction.jpg

Machine learning in medicine: a practical introduction

Following visible successes on a wide range of predictive tasks, machine learning techniques are attracting substantial interest from medical researchers and clinicians. We address the need for capacity development in this area by providing a conceptual introduction to machine learning alongside a practical guide to developing and evaluating predictive algorithms using freely-available open source software and public domain data

https://editorialia.com/wp-content/uploads/2020/06/cover-interpretable-machine-learning-1.jpg

Interpretable Machine Learning (A Guide for Making Black Box Models Explainable)

The book focuses on machine learning models for tabular data (also called relational or structured data) and less on computer vision and natural language processing tasks. Reading the book is recommended for machine learning practitioners, data scientists, statisticians, and anyone else interested in making machine learning models interpretable.

https://editorialia.com/wp-content/uploads/2020/06/explaining-autonomous-driving-by-learning-end-to-end-visual-attention.jpg

Explaining Autonomous Driving by Learning End-to-End Visual Attention

In this work we propose to train an imitation learning based agent equipped with an attention model. The attention model allows us to understand what part of the image has been deemed most important. Interestingly, the use of attention also leads to superior performance in a standard benchmark using the CARLA driving simulator.

https://editorialia.com/wp-content/uploads/2020/06/dive-into-deep-learning.jpg

Dive into Deep Learning

“We set out to create a resource that could (i) be freely available for everyone; (ii) offer sufficient technical depth to provide a starting point on the path to actually becoming an applied machine learning scientist; (iii) include runnable code, showing readers how to solve problems in practice; (iv) allow for rapid updates, both by us and also by the community at large; and (v) be complemented by a forum for interactive discussion of technical details and to answer questions”.

https://editorialia.com/wp-content/uploads/2020/06/the-art-of-machine-learning-algorithms-data-r.jpg

The Art of Machine Learning (Algorithms + Data + R)

I wrote this book because: • ML is not a recipe. It is not a matter of knowing the syntax and mechanics of various software packages.• ML is an art, not a science. (Hence the title of this book). • One does not have to be a math whiz or know advanced math in orer to use ML effectively, but one does need to understand the concepts well — the Why? and How? of ML methods

https://editorialia.com/wp-content/uploads/2020/06/guideline-for-ai-for-medical-products.jpg

Guideline for AI for medical products

The objective of this guideline is to provide medical device manufacturers and notified bodies instructions and to provide them with a concrete checklist to understand what the expectations of the notified bodies are, to promote step-by-step implementation of safety of medical devices, that implement artificial intelligence methods, in particular machine learning, to compensate for the lack of a harmonized standard (in the interim) to the greatest extent possible.

https://editorialia.com/wp-content/uploads/2020/05/machine_learning_from_scratch-2.jpg

Machine Learning From Scratch

An extensive list of fundamental machine learning models and algorithms from scratch in vanilla Python.