Machine Learning from scratch (by Danny Friedman)

This book covers the building blocks of the most common methods in machine learning. This set of methods is like a toolbox for machine learning engineers. Those entering the field of machine learning should feel comfortable with this toolbox so they have the right tool for a variety of tasks.

Dive into Deep Learning

“We set out to create a resource that could (i) be freely available for everyone; (ii) offer sufficient technical depth to provide a starting point on the path to actually becoming an applied machine learning scientist; (iii) include runnable code, showing readers how to solve problems in practice; (iv) allow for rapid updates, both by us and also by the community at large; and (v) be complemented by a forum for interactive discussion of technical details and to answer questions”.

Microsoft NLP Best Practices

This repository contains examples and best practices for building NLP systems, provided as Jupyter notebooks and utility functions. The focus of the repository is on state-of-the-art methods and common scenarios that are popular among researchers and practitioners working on problems involving text and language

The Super Duper NLP Repo & The Big Bad NLP Database

A database housing more than 100 Colab notebooks running ML code for various NLP tasks. Colab is an excellent destination to experiment with the latest models as it comes with a free GPU/TPU housed in Google’s back-end servers… And a collection of more than 400 NLP datasets that it include papers.

Google Engineering Practices Documentation

Google has many generalized engineering practices that cover all languages and all projects. These documents represent their collective experience of various best practices that they have developed over time. It is possible that open source projects or other organizations would benefit from this knowledge.

Free Cybersecurity Training

Provides instruction in the basic of network security in depth. Includes security objectives, security architecture, security models and security layers; risk management, network security policy, and security training. Includes the give security keys, confidentiality integrity, availability, accountability and auditability. Lecture 3 hours per week.

Python for Everybody: Exploring Data in Python 3

Python for Everybody is designed to introduce students to programming and software development through the lens of exploring data. You can think of the Python programming language as your tool to solve data problems that are beyond the capability of a spreadsheet. (Dr. Charles R. Severance)