Normal

Publicación sobre Inteligencia Artificial

Hugging Face datasets

Hugging Face datasets

One-line dataloaders for many public datasets & Efficient data pre-processing

Probabilistic Machine Learning: An Introduction

Probabilistic Machine Learning: An Introduction

“In this book, we will cover the most common types of ML, but from a probabilistic perspective. Roughly speaking, this means that we treat all unknown quantities (e.g., predictions about the future value of some quantity of interest, such as tomorrow’s temperature, or the parameters of some model) as random variables, that are endowed with probability distributions which describe a weighted set of possible values the variable may have.[…].”.

R0:5ad410ba3fa0191312506cf94754bfd9-Addressing Ethical Dilemmas in AI: Listening to Engineers

Addressing Ethical Dilemmas in AI: Listening to Engineers

Documentation is key – design decisions in AI development must be documented in detail, potentially taking inspiration from the field of risk management. There is a need to develop a framework for large-scale testing of AI effects, beginning with public tests of AI systems, and moving towards real-time validation and monitoring. Governance frameworks for decisions in AI development need to be clarified, including the questions of post-market surveillance of product or system performance. Certification of AI ethics expertise would be helpful to support professionalism in AI development teams. Distributed responsibility should be a goal, resulting in a clear definition of roles and responsibilities as well as clear incentive structures for taking in to account broader ethical concerns in the development of AI systems. Spaces for discussion of ethics are lacking and very necessary both internally in companies and externally, provided by independent organisations. Looking to policy ensuring whistleblower protection and ombudsman position within companies, as well as participation from professional organisations. One solution is to look to the existing EU RRI framework and to ensure multidisciplinarity in AI system development team composition. The RRI framework can provide systematic processes for engagement with stakeholders and ensuring that problems are better defined. The challenges of AI systems point to a general lack in engineering education. We need to ensure that technical disciplines are empowered to identify ethical problems, which requires broadening technical education programs to include societal concerns. Engineers advocate for public transparency of adherence to standards and ethical principles for AI-driven products and services to enable learning from each other’s mistakes and to foster a no-blame culture.

R0: dde004c79ac901067ab1189ea01b8ac7-Data Science: A First Introduction

Data Science: A First Introduction

The book is structured so that learners spend the first four chapters learning how to use the R programming language and Jupyter notebooks to load, wrangle/clean, and visualize data, while answering descriptive and exploratory data analysis questions. The remaining chapters illustrate how to solve four common problems in data science, which are useful for answering predictive and inferential data analysis questions[…]

R0identifier_ 7029b309b114bdb1aa72b6fd0da905f3-Yann LeCun’s Deep Learning Course at CDS

Yann LeCun’s Deep Learning Course at CDS

This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. The prerequisites include: DS-GA 1001 Intro to Data Science or a graduate-level machine learning course.

R0_fe33488e78e8d3bac711f1ffb6ea5a48-Bayesian-Data-Analysis-course

Bayesian Data Analysis: book & course

This book is intended to have three roles and to serve three associated audiences: an introductory text on Bayesian inference starting from first principles, a graduate text on effective current approaches to Bayesian modeling and computation in statistics and related fields, and a handbook of Bayesian methods in applied statistics for general users of and researchers in applied statistics. Although introductory in its early sections, the book is definitely not elementary in the sense of a first text in statistics

https://editorialia.com/wp-content/uploads/2020/09/tidy-modeling-with-r.jpg

Tidy Modeling with R

This book provides an introduction to how to use our software to create models. We focus on a dialect of R called the tidyverse that is designed to be a better interface for common tasks using R. If you’ve never heard of or used the tidyverse, Chapter 2 provides an introduction. In this book, we demonstrate how the tidyverse can be used to produce high quality models. The tools used to do this are referred to as the tidymodels packages

https://editorialia.com/wp-content/uploads/2020/09/by-danny-friedman-machine-learning-from-scratch-1.jpg

Machine Learning from scratch (by Danny Friedman)

This book covers the building blocks of the most common methods in machine learning. This set of methods is like a toolbox for machine learning engineers. Those entering the field of machine learning should feel comfortable with this toolbox so they have the right tool for a variety of tasks.