Ciencia de Datos | 🇬🇧 Data Science

R0:507c2e7fe07ef9a317eb4c7a51869fdc-Federated Learning: Issues in Medical Application

Federated Learning: Issues in Medical Application

In this presentation, the current issues to make federated learning flawlessly useful in the real world will be briefly overviewed. They are related to data/system heterogeneity, client management, traceability, and security. Also, we introduce the modularized federated learning framework, we currently develop, to experiment various techniques and protocols to find solutions for aforementioned issues. The framework will be open to public after development completes.

R0:7194c033807f71949262faf563aef58e-Scientific Visualization: Python + Matplotlib

Scientific Visualization: Python + Matplotlib

The Python scientific visualisation landscape is huge. It is composed of a myriad of tools, ranging from the most versatile and widely used down to the more specialised and confidential. Some of these tools are community based while others are developed by companies. Some are made specifically for the web, others are for the desktop only, some deal with 3D and large data, while others target flawless 2D rendering.

R0:e3d9ea294a21c145042e5f31369de739-CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA (Counterfactual And Recourse LibrAry), a python library for benchmarking counterfactual explanation methods across both different data sets and different machine learning models. In summary, our work provides the following contributions: (i) an extensive benchmark of 11 popular counterfactual explanation methods, (ii) a benchmarking framework for research on future counterfactual explanation methods, and (iii) a standardized set of integrated evaluation measures and data sets for transparent and extensive comparisons of these methods. We have open-sourced CARLA and our experimental results on Github, making them available as competitive baselines. We welcome contributions from other research groups and practitioners.

R0:5e6fade87218b43e4b8d96158080cc85-A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning

A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning

This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.

Classification based on Topological Data Analysis

Classification based on Topological Data Analysis

Topological Data Analysis (TDA) is an emergent field that aims to discover topological information hidden in a dataset. TDA tools have been commonly used to create filters and topological descriptors to improve Machine Learning (ML) methods. This paper proposes an algorithm that applies TDA directly to multi-class classification problems, even imbalanced datasets, without any further ML stage