ML

Machine Learning

https://editorialia.com/wp-content/uploads/2020/02/image-7.png

Machine learning in Python: the top programming language

Phyton’s most notable points are:
-Is a great library ecosystem (Scikit-learn, Pandas, Matplotlib, NLTK, Scikit-image, PyBrain, Caffe, StatsModels, TensorFlow, Keras, etc).
-Growing popularity.
-Has a low entry barrier, has flexibility, is a platform independence, has readability, good visualization options, good community support and growing popularity.

https://editorialia.com/wp-content/uploads/2020/02/neural-networks-with-javascript-succinctly.jpg

Neural Networks with JavaScript Succinctly

Although most concepts are relatively simple, there are many of them, and they interact with each other in unobvious ways, which is a major challenge of neural networks. But you can learn all important neural network concepts by running and examining the code in this book, with complete example programs for the three major types of neural network problems.

https://arxiv.org/pdf/2001.06309.pdf

Cyber Attack Detection thanks to Machine Learning Algorithms

Cybersecurity attacks are growing both in frequency and sophistication over the years. This increasing sophistication and complexity call for more advancement and continuous innovation in defensive strategies. Traditional methods of intrusion detection and deep packet inspection, while still largely used
and recommended, are no longer sufficient to meet the demands of growing security threats.

Quickstart to ML with dabl. thi is an interesting new python package that makes supervised machinelearning easy

Machine Learning with dabl ( 0.1.8)

“dabl tries to reduce the turnaround time required for a quick baseline estimate of a supervised learning problem. It does so by automating the task of iterating through different techniques of data preprocessing, feature engineering, parameter tuning and model building to generate efficacious baseline models”.

https://editorialia.com/wp-content/uploads/2020/02/machine-learning-and-deep-learning-frameworks-and-libraries-for-large-scale-data-mining-a-survey.jpg

Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey

The combined impact of new computing resources and techniques with an increasing avalanche of large datasets, is transforming many research areas and may lead to technological breakthroughs that can be used by billions of people. In the recent years, Machine Learning and especially its subfield Deep Learning have seen impressive advances. Techniques developed within these two fields are now able to analyze and learn from huge amounts of real world examples in a disparate formats. While the number of Machine Learning algorithms is extensive and growing, their implementations through frameworks and libraries is also extensive and growing too.

https://editorialia.com/wp-content/uploads/2020/06/free-and-open-machine-learning-documentation-release-03.jpg

Free and Open Machine Learning Documentation Release 1.0.1

This book is all about applying machine learning solutions for real practical use cases. This means the core focus is on outlining how to use machine learning in a simple way so you can benefit of this powerful technology.
Machine learning is an exciting and powerful technology. The continuous use and growth of machine learning technology opens new opportunities. This great technology should available to use for everyone. This means that everyone should be able to learn, play and create great applications using machine learning technology.

Aprendizaje automático en análisis de datos sísmicos 4D

(Deep Neural Networks in Geophysics) Esta tesis investiga las propiedades fundamentales de las redes neuronales en aplicaciones geofísicas. Incluye la reutilización de redes neuronales entrenadas, que son excelentes para identificar imágenes y aplicarlas para identificar capas de rocas y eventos geológicos en imágenes geofísicas. Esta tesis profundiza para evaluar si la teoría de incluir información específica de …

Aprendizaje automático en análisis de datos sísmicos 4D Read More »

https://editorialia.com/wp-content/uploads/2019/10/read_attend_and_comment_-a_deep_architecture_for_automatic_news_comment_generation.jpg

Leer, asistir y comentar: una arquitectura profunda para la generación automática de comentarios

La generación automática de comentarios de noticias es una nueva plataforma para las técnicas de generación de lenguaje natural. En este documento, proponemos un procedimiento de “lectura, comentario y atención” para la generación de comentarios de noticias y formalizamos el procedimiento con una red de lectura y una red de generación. La red de lectura comprende un artículo de noticias y extrae algunos puntos importantes de él, luego la red de generación crea un comentario al atender los puntos discretos extraídos y el título de la noticia.