🔘 Table of associated records
<meta name="Description" CONTENT="Artificial Intelligence Journal" />
<meta name="r0identifier" content="b129021066d4fc15a561e0053c355588" />
Rx | Registration ID | Nº |
---|
R0 | Hash MD5 (of R3): | b129021066d4fc15a561e0053c355588 |
R1 | Registration number (in the domain editorialia.com at WordPress): | dmeditorialiawp.12669 |
R2 | Date-p-order (ddmmyyyypx): | 23062020p1 |
R3 | Cid (combined id R1+R2): | dmeditorialiawp.1266923062020p1 |
R4 | Resource official title: | Interpretable Machine Learning A Guide for Making Black Box Models Explainable |
R5 | Publisher: | Self-published promotion version |
R6 | Resource website (1) ( #OpenAccess | #Openscience ): | christophm.github.io/interpretable-ml-book/index.html |
R12 | Authors (separated by commas): | Christoph Molnar |
R14 | Keyword (selected 1 among the labels applied to this entry): | =ethics |
R15 | QR code (of the linked url at WP): |  |
R16 | Time stamp URL: | |
R17 | Digital signature URL: | Pending signature |
Click to rate this post
[Total: 0 Average: 0]