A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning


 🔘 Table of associated records

<meta name="Description" CONTENT="Artificial Intelligence Journal" />
<meta name="r0identifier" content="5e6fade87218b43e4b8d96158080cc85" />
RxRegistration ID
R0Hash MD5 (of R3):5e6fade87218b43e4b8d96158080cc85
R1Registration number (in the domain editorialia.com at WordPress):dmeditorialiawp.31553
R2Date-p-order (ddmmyyyypx): 18092021p1
R3Cid (combined id R1+R2):dmeditorialiawp.3155318092021p1
R4Resource official title:A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
R5Publisher:arXiv.org
R6Resource website (1) ( #OpenAccess | #Openscience ): arxiv.org/pdf/2109.02355v1.pdf
R9DOI:arXiv:2109.02355v1 [stat.ML]
R12Authors (separated by commas):Yehuda Dar, Vidya Muthukumar, Richard G. Baraniuk
R14Keyword (selected 1 among the labels applied to this entry):=MachineLearning
R15QR code (of the linked url at WP):qr code
R16Time stamp URL:
R17Digital signature URL:Pending signature
Click to rate this post
[Total: 3 Average: 5]

Liked this post? Follow this blog to get more.