R Notes for Professionals book

Chapters

  1. Getting started with R Language
  2. Variables
  3. Arithmetic Operators
  4. Matrices
  5. Formula
  6. Reading and writing strings
  7. String manipulation with stringi package
  8. Classes
  9. Lists
  10. Hashmaps
  11. Creating vectors
  12. Date and Time
  13. The Date class
  14. Date-time classes (POSIXct and POSIXlt)
  15. The character class
  16. Numeric classes and storage modes
  17. The logical class
  18. Data frames
  19. Split function
  20. Reading and writing tabular data in plain-text files (CSV, TSV, etc.)
  21. Pipe operators (%>% and others)
  22. Linear Models (Regression)
  23. data.table
  24. Pivot and unpivot with data.table
  25. Bar Chart
  26. Base Plotting
  27. boxplot
  28. ggplot2
  29. Factors
  30. Pattern Matching and Replacement
  31. Run-length encoding
  32. Speeding up tough-to-vectorize code
  33. Introduction to Geographical Maps
  34. Set operations
  35. tidyverse
  36. Rcpp
  37. Random Numbers Generator
  38. Parallel processing
  39. Subsetting
  40. Debugging
  41. Installing packages
  42. Inspecting packages
  43. Creating packages with devtools
  44. Using pipe assignment in your own package %<>%: How to ?
  45. Arima Models
  46. Distribution Functions
  47. Shiny
  48. spatial analysis
  49. sqldf
  50. Code profiling
  51. Control flow structures
  52. Column wise operation
  53. JSON
  54. RODBC
  55. lubridate
  56. Time Series and Forecasting
  57. strsplit function
  58. Web scraping and parsing
  59. Generalized linear models
  60. Reshaping data between long and wide forms
  61. RMarkdown and knitr presentation
  62. Scope of variables
  63. Performing a Permutation Test
  1. xgboost
  2. R code vectorization best practices
  3. Missing values
  4. Hierarchical Linear Modeling
  5. *apply family of functions (functionals)
  6. Text mining
  7. ANOVA
  8. Raster and Image Analysis
  9. Survival analysis
  10. Fault-tolerant/resilient code
  11. Reproducible R
  12. Fourier Series and Transformations
  13. .Rprofile
  14. dplyr
  15. caret
  16. Extracting and Listing Files in Compressed Archives
  17. Probability Distributions with R
  18. R in LaTeX with knitr
  19. Web Crawling in R
  20. Creating reports with RMarkdown
  21. GPU-accelerated computing
  22. heatmap and heatmap.2
  23. Network analysis with the igraph package
  24. Functional programming
  25. Get user input
  26. Spark API (SparkR)
  27. Meta: Documentation Guidelines
  28. Input and output
  29. I/O for foreign tables (Excel, SAS, SPSS, Stata)
  30. I/O for database tables
  31. I/O for geographic data (shapefiles, etc.)
  32. I/O for raster images
  33. I/O for R’s binary format
  34. Recycling
  35. Expression: parse + eval
  36. Regular Expression Syntax in R
  37. Regular Expressions (regex)
  38. Combinatorics
  39. Solving ODEs in R
  40. Feature Selection in R — Removing Extraneous Features
  41. Bibliography in RMD
  42. Writing functions in R
  43. Color schemes for graphics
  44. Hierarchical clustering with hclust
  45. Random Forest Algorithm
  46. RESTful R Services
  47. Machine learning
  48. Using texreg to export models in a paper-ready way
  49. Publishing
  50. Implement State Machine Pattern using S4 Class
  51. Reshape using tidyr
  52. Modifying strings by substitution
  53. Non-standard evaluation and standard evaluation
  54. Randomization
  55. Object-Oriented Programming in R
  56. Coercion
  57. Standardize analyses by writing standalone R scripts
  58. Analyze tweets with R
  59. Natural language processing
  60. R Markdown Notebooks (from RStudio)
  61. Aggregating data frames
  62. Data acquisition
  63. R memento by examples
  64. Updating R version

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content, more changes can be sent to web@petercv.com for new content to be published or updated. (See page 460 to watch all creedit over PDF file, please).


Source: goalkicker.com/RBook

Click to rate this post
[Total: 0 Average: 0]

Liked this post? Follow this blog to get more.