Research

https://editorialia.com/wp-content/uploads/2020/06/response-to-the-european-commissione28099s-white-paper-on-ai.jpg

Montreal AI Ethics Institute: Response to the European Commission’s white paper on AI

In February 2020, the European Commission (EC) published a white paper entitled, On Artificial Intelligence – A European approach to excellence and trust. This paper outlines the EC’s policy options for the promotion and adoption of artificial intelligence (AI) in the European Union. We reviewed this paper and published a response addressing the EC’s plans to build an “ecosystem of excellence” and an “ecosystem of trust,” as well as the safety and liability implications of AI, the internet of things (IoT), and robotics.

https://editorialia.com/wp-content/uploads/2020/06/a-rigorous-analysis-of-selfe28090adaptation-in-discrete-evolutionary-algorithms.jpg

A Rigorous Analysis of Self‐Adaptation in Discrete Evolutionary Algorithms

A key challenge to making effective use of evolutionary algorithms (EAs) is to choose appropriate settings for their parameters. However, the appropriate parameter setting generally depends on the structure of the optimization problem, which is often unknown to the user. Non‐deterministic parameter control mechanisms adjust parameters using information obtained from the evolutionary process.

https://editorialia.com/wp-content/uploads/2020/06/explaining-autonomous-driving-by-learning-end-to-end-visual-attention.jpg

Explaining Autonomous Driving by Learning End-to-End Visual Attention

In this work we propose to train an imitation learning based agent equipped with an attention model. The attention model allows us to understand what part of the image has been deemed most important. Interestingly, the use of attention also leads to superior performance in a standard benchmark using the CARLA driving simulator.

https://editorialia.com/wp-content/uploads/2020/06/composing-ai-pipelines-with-ai4eu-experiments.jpg

Composing AI Pipelines with AI4EU Experiments

Show how to onboard AI tools as re-usable building blocks that then can be used to easily compose AI pipelines in the AI4EU Experiments visual editor

https://editorialia.com/wp-content/uploads/2020/06/covid-19-and-contact-tracing-.jpg

Covid-19 and contact tracing apps

Multi-presenter format with exciting Speakers from the current European ICT research projects AI4EU (www.ai4eu.eu) and Helios (helios-social.com/) as well as Guest Speakers.

https://editorialia.com/wp-content/uploads/2020/06/will-the-fashion-industry-survive-without-ai_.jpg

Will the fashion industry survive without AI?

Yooneeque has made digitalisation its motto. An artificial intelligence called YOONA is the fashion designer here. This time again during the Berlin Fashion Week the latest outputs of the software were presented

https://editorialia.com/wp-content/uploads/2020/06/the-art-of-machine-learning-algorithms-data-r.jpg

The Art of Machine Learning (Algorithms + Data + R)

I wrote this book because: • ML is not a recipe. It is not a matter of knowing the syntax and mechanics of various software packages.• ML is an art, not a science. (Hence the title of this book). • One does not have to be a math whiz or know advanced math in orer to use ML effectively, but one does need to understand the concepts well — the Why? and How? of ML methods

https://editorialia.com/wp-content/uploads/2020/06/microsoft-nlp-best-practices.jpg

Microsoft NLP Best Practices

This repository contains examples and best practices for building NLP systems, provided as Jupyter notebooks and utility functions. The focus of the repository is on state-of-the-art methods and common scenarios that are popular among researchers and practitioners working on problems involving text and language

https://editorialia.com/wp-content/uploads/2020/06/the-super-duper-nlp-repo-the-big-bad-nlp-database.jpg

The Super Duper NLP Repo & The Big Bad NLP Database

A database housing more than 100 Colab notebooks running ML code for various NLP tasks. Colab is an excellent destination to experiment with the latest models as it comes with a free GPU/TPU housed in Google’s back-end servers… And a collection of more than 400 NLP datasets that it include papers.