SELECT Specialty down
Cybersecurity
Sequence Feature Extraction for Malware Family Analysis via Graph Neural Network
Malicious software (malware) causes much harm to our devices and life. We are eager to understand the malware behavior and the threat it made. Most of the record files of malware are variable length and text-based files with time stamps, such as event log data and dynamic analysis profiles. Using the time stamps, we can sort such data into sequence-based data for the following analysis. However, dealing with the text-based sequences with variable lengths is difficult. In addition, unlike natural language text data, most sequential data in information security have specific properties and structure, such as loop, repeated call, noise, etc. To deeply analyze the API call sequences with their structure, we use graphs to represent the sequences, which can further investigate the information and structure, such as the Markov model. Therefore, we design and implement an Attention Aware Graph Neural Network (AWGCN) to analyze the API call sequences. Through AWGCN, we can obtain the sequence embeddings to analyze the behavior of the malware. Moreover, the classification experiment result shows that AWGCN outperforms other classifiers in the call-like datasets, and the embedding can further improve the classic model’s performance.
Framework based on parameterized images on ResNet to identify intrusions in smartwatches or other related devices
The continuous appearance and improvement of mobile devices in the form of smartwatches, smartphones and other similar devices has led to a growing and unfair interest in putting their users under the magnifying glass and control of applications.
‘Framework’ basado en imágenes parametrizadas sobre ResNet para identificar intrusiones en ‘smartwatches’ u otros dispositivos afines
La continua aparición y mejora de dispositivos móviles en forma de ‘smartwatches’, ‘smartphones’ y otros dispositivos similares ha propicio un creciente y desleal interés en poner bajo la lupa y el control de los aplicativos a sus usuarios. De forma ofuscada por los fabricantes.
Side-Channel Sensing: Exploiting Side-Channels to Extract Information for Medical Diagnostics and Monitoring
Information within systems can be extracted through side-channels; unintended communication channels that leak information. The concept of side-channel sensing is explored, in which sensor data is analysed in non-trivial ways to recover subtle, hidden or unexpected information.
Loading…
Something went wrong. Please refresh the page and/or try again.