Educación | 🇬🇧 Education

r0:e605066113bd05bcb2ad6161c651d958- Auto Quantum Circuits

Auto Quantum Circuits

«AutoQML, self-assembling circuits, hyper-parameterized Quantum ML platform, using cirq, tensorflow and tfq. Trillions of possible qubit registries, gate combinations and moment sequences, ready to be adapted into your ML flow. Here I demonstrate climatechange, jameswebbspacetelescope and microbiology vision applications… [Thus far, a circuit with 16-Qubits and a gate sequence of [ YY ] – [ XX ] – [CNOT] has performed the best, per my blend of metrics…].

R0:c4c3ffc882452ee50fea21d2c6b1486a-CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization

CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization

CNN Explainer tightly integrates a model overview that summarizes a CNN’s structure, and on-demand, dynamic visual explanation views that help users understand the underlying components of CNNs. Through smooth transitions across levels of abstraction, our tool enables users to inspect the interplay between low-level mathematical operations and high-level model structures.

R0:62a6aa3b4882ad9b194a4ae5c97b4d58-Ethics-based auditing of automated decision-making systems: intervention points and policy implications

Ethics-based auditing of automated decision-making systems: intervention points and policy implications

Organisations increasingly use automated decision-making systems (ADMS) to inform decisions that affect humans and their environment. While the use of ADMS can improve the accuracy and efficiency of decision-making processes, it is also coupled with ethical challenges. Unfortunately, the governance mechanisms currently used to oversee human decision-making often fail when applied to ADMS.

R0:8c6cf8db215cbc24a8aec1e0786e1356-AI and the Future of Skills, Volume 1

AI and the Future of Skills, Volume 1

The OECD launched the Artificial Intelligence and the Future of Skills project to develop a programme that could assess the capabilities of AI and robotics and their impact on education and work. This report represents the first step in developing the methodological approach of the project.

R0:fd224a04984225e4bdd2ae7a7e595529-Human Learn

Human Learn

Machine learning covers a lot of ground but it is also capable of making bad decision. We’ve also reached a stage of hype that folks forget that many classification problems can be handled by natural intelligence too. This package contains scikit-learn compatible tools that should make it easier to construct and benchmark rule based systems that are designed by humans. You can also use it in combination with ML models.

R0:97532435b0393f0a6ae72973cc68382e-How to avoid machine learning pitfalls: a guide for academic researchers

How to avoid machine learning pitfalls: a guide for academic researchers

This document gives a concise outline of some of the common mistakes that occur when using machine learning techniques, and what can be done to avoid them. It is intended primarily as a guide for research students, and focuses on issues that are of particular concern within academic research, such as the need to do rigorous comparisons and reach valid conclusions. It covers five stages of the machine learning process: what to do before model building, how to reliably build models, how to robustly evaluate models, how to compare models fairly, and how to report results

R0:2271580d5e4f655f084ee4605a50b147-labml.ai Deep Learning Paper Implementations

labml.ai Deep Learning Paper Implementations

This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations, and the website renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better.