Machine Learning (Article)

https://editorialia.com/wp-content/uploads/2020/05/machine_learning_from_scratch-2.jpg

Machine Learning From Scratch

An extensive list of fundamental machine learning models and algorithms from scratch in vanilla Python.

https://editorialia.com/wp-content/uploads/2020/05/a-human-centered-evaluation-of-a-deep-learning-system-deployed-in-clinics-for-the-detection-of-diabetic-retinopathy.jpg

A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy

This paper contributes the first human-centered observational study of a deep learning system deployed directly in clinical care with patients. Through field observations and interviews at eleven clinics across Thailand, we explored the expectations and realities that nurses encounter in bringing a deep learning model into their clinical practices. First, we outline typical eye-screening workflows and challenges that nurses experience when screening hundreds of patients. Then, we explore the expectations nurses have for an AI-assisted eye screening process. Next, we present a human-centered, observational study of the deep learning system used in clinical care, examining nurses’ experiences with the system, and the socio-environmental factors that impacted system performance. Finally, we conclude with a discussion around applications of HCI methods to the evaluation of deep learning algorithms in clinical environments.

https://editorialia.com/wp-content/uploads/2020/04/cmglee_cambridge_science_festival_2015_da_vinci.jpg

The need for a system view to regulate artificial intelligence/machine learning-based software as medical device

FDA need to widen their scope from evaluating medical AI/ML-based products to assessing systems. This shift in perspective—from a product view to a system view—is central to maximizing the safety and efficacy of AI/ML in health care, but it also poses significant challenges for agencies like the FDA who are used to regulating products, not systems. We offer several suggestions for regulators to make this challenging but important transition

https://editorialia.com/wp-content/uploads/2020/03/madewithml-1.png

Made With ML

Main website: madewithml.com Summary Made With ML is a platform for the ML community to discover, build and share projects. Our goal is to create a learning space where all of the best ML content is tagged, organized and curated. And as you use the platform and learn, we guide you through building projects and …

Made With ML Read More »

https://editorialia.com/wp-content/uploads/2020/06/deep-learning-or-machine-learning.jpg

Deep Learning or Machine Learning? (MathWorks)

“In this ebook, we discuss some of the key differences between deep learning and traditional machine learning approaches. We look at three factors that might influence your decision and then step through an example that combines the two approaches”. (MathWorks).

https://editorialia.com/wp-content/uploads/2020/02/logo-tpot.jpg

TPOT is a Python Automated Machine Learning tool

Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning (AutoML) tool that optimizes machine learning pipelines using genetic programming.

https://editorialia.com/wp-content/uploads/2020/02/machine-learning-and-deep-learning-frameworks-and-libraries-for-large-scale-data-mining-a-survey.jpg

Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey

The combined impact of new computing resources and techniques with an increasing avalanche of large datasets, is transforming many research areas and may lead to technological breakthroughs that can be used by billions of people. In the recent years, Machine Learning and especially its subfield Deep Learning have seen impressive advances. Techniques developed within these two fields are now able to analyze and learn from huge amounts of real world examples in a disparate formats. While the number of Machine Learning algorithms is extensive and growing, their implementations through frameworks and libraries is also extensive and growing too.

https://editorialia.com/wp-content/uploads/2020/06/free-and-open-machine-learning-documentation-release-03.jpg

Free and Open Machine Learning Documentation Release 1.0.1

This book is all about applying machine learning solutions for real practical use cases. This means the core focus is on outlining how to use machine learning in a simple way so you can benefit of this powerful technology.
Machine learning is an exciting and powerful technology. The continuous use and growth of machine learning technology opens new opportunities. This great technology should available to use for everyone. This means that everyone should be able to learn, play and create great applications using machine learning technology.