Advanced

R0:a56672bf43097f7a50286448af70703b-Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning

Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning

Isaac Gym offers a high performance learning platform to train policies for wide variety of robotics tasks directly on GPU. Both physics simulation and the neural network policy training reside on GPU and communicate by directly passing data from physics buffers to PyTorch tensors without ever going through any CPU bottlenecks. This leads to blazing fast training times for complex robotics tasks on a single GPU with 2-3 orders of magnitude improvements compared to conventional RL training that uses a CPU based simulator and GPU for neural networks.

R0:fd224a04984225e4bdd2ae7a7e595529-Human Learn

Human Learn

Machine learning covers a lot of ground but it is also capable of making bad decision. We’ve also reached a stage of hype that folks forget that many classification problems can be handled by natural intelligence too. This package contains scikit-learn compatible tools that should make it easier to construct and benchmark rule based systems that are designed by humans. You can also use it in combination with ML models.

R0:5ad410ba3fa0191312506cf94754bfd9-Addressing Ethical Dilemmas in AI: Listening to Engineers

Addressing Ethical Dilemmas in AI: Listening to Engineers

Documentation is key – design decisions in AI development must be documented in detail, potentially taking inspiration from the field of risk management. There is a need to develop a framework for large-scale testing of AI effects, beginning with public tests of AI systems, and moving towards real-time validation and monitoring. Governance frameworks for decisions in AI development need to be clarified, including the questions of post-market surveillance of product or system performance. Certification of AI ethics expertise would be helpful to support professionalism in AI development teams. Distributed responsibility should be a goal, resulting in a clear definition of roles and responsibilities as well as clear incentive structures for taking in to account broader ethical concerns in the development of AI systems.

https://editorialia.com/wp-content/uploads/2020/09/tidy-modeling-with-r.jpg

Tidy Modeling with R

This book provides an introduction to how to use our software to create models. We focus on a dialect of R called the tidyverse that is designed to be a better interface for common tasks using R. If you’ve never heard of or used the tidyverse, Chapter 2 provides an introduction. In this book, we demonstrate how the tidyverse can be used to produce high quality models. The tools used to do this are referred to as the tidymodels packages

https://editorialia.com/wp-content/uploads/2020/09/the-future-of-ai.jpg

The future of AI

If you wonder what is next in the evolution towards general AI then this session is for you. We have seen some painful failures of artificial intelligence pointing to a lack of ‘common sense’. Are neural networks really the solution we seek or is a new path needed? Find out what IBM Research is cooking in terms of hardware and software in the never ending quest towards General AI.

https://editorialia.com/wp-content/uploads/2020/09/by-danny-friedman-machine-learning-from-scratch-1.jpg

Machine Learning from scratch (by Danny Friedman)

This book covers the building blocks of the most common methods in machine learning. This set of methods is like a toolbox for machine learning engineers. Those entering the field of machine learning should feel comfortable with this toolbox so they have the right tool for a variety of tasks.

https://editorialia.com/wp-content/uploads/2020/08/artificial-intelligence-in-medical-imaging.jpg

Artificial Intelligence in Medical Imaging

“This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging”.

https://editorialia.com/wp-content/uploads/2020/07/mastering-shiny.jpg

Mastering Shiny

This book complements Shiny’s online documentation and is intended to help app authors develop a deeper understanding of Shiny. After reading this book, you’ll be able to write apps that have more customized UI, more maintainable code, and better performance and scalability.

https://editorialia.com/wp-content/uploads/2020/06/privacy-preserving-ai.jpg

Privacy Preserving AI – Andrew Trask, OpenMined

Learn the basics of secure and private AI techniques, including federated learning and secure multi-party computation. In this talk, Andrew Trask of OpenMined highlights the importance of privacy preserving machine learning, and how to use privacy-focused tools like PySyft.