Laboratory

r0:e605066113bd05bcb2ad6161c651d958- Auto Quantum Circuits

Auto Quantum Circuits

«AutoQML, self-assembling circuits, hyper-parameterized Quantum ML platform, using cirq, tensorflow and tfq. Trillions of possible qubit registries, gate combinations and moment sequences, ready to be adapted into your ML flow. Here I demonstrate climatechange, jameswebbspacetelescope and microbiology vision applications… [Thus far, a circuit with 16-Qubits and a gate sequence of [ YY ] – [ XX ] – [CNOT] has performed the best, per my blend of metrics…].

R0:c4c3ffc882452ee50fea21d2c6b1486a-CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization

CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization

CNN Explainer tightly integrates a model overview that summarizes a CNN’s structure, and on-demand, dynamic visual explanation views that help users understand the underlying components of CNNs. Through smooth transitions across levels of abstraction, our tool enables users to inspect the interplay between low-level mathematical operations and high-level model structures.

R0:fd224a04984225e4bdd2ae7a7e595529-Human Learn

Human Learn

Machine learning covers a lot of ground but it is also capable of making bad decision. We’ve also reached a stage of hype that folks forget that many classification problems can be handled by natural intelligence too. This package contains scikit-learn compatible tools that should make it easier to construct and benchmark rule based systems that are designed by humans. You can also use it in combination with ML models.

Hugging Face datasets

Hugging Face datasets

One-line dataloaders for many public datasets & Efficient data pre-processing

https://editorialia.com/wp-content/uploads/2020/06/openmined-opensource-to-make-privacy-preserving-of-ai-technologies.jpg

OpenMined: open source to make privacy-preserving of AI technologies

With OpenMined, an AI model can be governed by multiple owners and trained securely on an unseen, distributed dataset.The mission of the OpenMined community is to create an accessible ecosystem of tools for private, secure, multi-owner governed AI

https://editorialia.com/wp-content/uploads/2020/06/toolkit-for-healthcare-imaging.jpg

Medical Open Network for AI (MONAI), AI Toolkit for Healthcare Imaging

The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm.

https://editorialia.com/wp-content/uploads/2020/06/the-super-duper-nlp-repo-the-big-bad-nlp-database.jpg

The Super Duper NLP Repo & The Big Bad NLP Database

A database housing more than 100 Colab notebooks running ML code for various NLP tasks. Colab is an excellent destination to experiment with the latest models as it comes with a free GPU/TPU housed in Google’s back-end servers… And a collection of more than 400 NLP datasets that it include papers.

https://editorialia.com/wp-content/uploads/2020/04/artificial-intelligence-foundations-of-computational-agents.jpg

Artificial Intelligence: Foundations of Computational Agents

It presents artificial intelligence as the study of the design of intelligent computational agents. The book is structured as a textbook, but it is accessible to a wide audience of professionals and researchers. In the last decades we have witnessed the emergence of artificial intelligence as a serious science and engineering discipline. This book provides an accessible synthesis of the field aimed at undergraduate and graduate students. It provides a coherent vision of the foundations of the field as it is today. It aims to provide that synthesis as an integrated science, in terms of a multi-dimensional design space that has been partially explored. As with any science worth its salt, artificial intelligence has a coherent, formal theory and a rambunctious experimental wing. The book balances theory and experiment, showing how to link them intimately together. It develops the science of AI together with its engineering applications.