#Medicine

R0:507c2e7fe07ef9a317eb4c7a51869fdc-Federated Learning: Issues in Medical Application

Federated Learning: Issues in Medical Application

In this presentation, the current issues to make federated learning flawlessly useful in the real world will be briefly overviewed. They are related to data/system heterogeneity, client management, traceability, and security. Also, we introduce the modularized federated learning framework, we currently develop, to experiment various techniques and protocols to find solutions for aforementioned issues. The framework will be open to public after development completes.

R0:f70f5b9bc071317c0c1c9b1d7f122949-Highly accurate protein structure prediction with AlphaFold

Highly accurate protein structure prediction with AlphaFold

Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.

->Artificial intelligence towards data science

Probabilistic Machine Learning for Healthcare

Machine learning can be used to make sense of healthcare data. Probabilistic machine learning models help provide a complete picture of observed data in healthcare. In this review, we examine how probabilistic machine learning can advance healthcare. We consider challenges in the predictive model building pipeline where probabilistic models can be beneficial including calibration and missing data. Beyond predictive models, we also investigate the utility of probabilistic machine learning models in phenotyping, in generative models for clinical use cases, and in reinforcement learning.

https://editorialia.com/wp-content/uploads/2020/08/artificial-intelligence-in-medical-imaging.jpg

Artificial Intelligence in Medical Imaging

“This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging”.

https://editorialia.com/wp-content/uploads/2020/07/transforming-health-care-through-ai-revolutions-1.jpg

Transforming Health Care Through AI Revolutions

I will discuss relevant AI thrusts at NIST on health care informatics, focusing on the use of machine learning, knowledge representation and natural language processing. I will also discuss the need for explanations in AI systems (XAI) and current state of the art in medical XAI.

https://editorialia.com/wp-content/uploads/2020/06/undergraduate-diagnostic-imaging-fundamentals.jpg

Undergraduate Diagnostic Imaging Fundamentals

The structure and content of this work has been guided by the curricula developed by the European Society of Radiology, the Royal College of Radiologists, the Alliance of Medical Student Educators in Radiology, with guidance and input from Canadian Radiology Undergraduate Education Coordinators, and the Canadian Heads of Academic Radiology (CHAR).

https://editorialia.com/wp-content/uploads/2020/06/machine-learning-in-medicine-a-practical-introduction.jpg

Machine learning in medicine: a practical introduction

Following visible successes on a wide range of predictive tasks, machine learning techniques are attracting substantial interest from medical researchers and clinicians. We address the need for capacity development in this area by providing a conceptual introduction to machine learning alongside a practical guide to developing and evaluating predictive algorithms using freely-available open source software and public domain data